Contents

Introduction ...3
Block Diagram ...3
Front and Rear Panels ..4
Antenna Power Jumpers ..4
Antenna Use and Placement ...5
Accessory Antennas ..5
Specifications ...6
Service and Repair ..6
Returning Units for Repair ..6
Mailing Address ..6
Shipping Address ...6
Telephones ...6
Warranty ..6

Introduction

The UMC16B multi-coupler is used to distribute the signals from two antennas to eight diversity receivers to minimize the amount of cabling and antennas needed in multi-channel wireless systems. The design combines broad band ceramic filtering with low noise, high intercept point RF distribution to provide outstanding performance and flexibility. Up to eight diversity receivers or up to 16 non-diversity receivers can be utilized across a 230 MHz passband.

The UMC16B can be powered from an external supply, 12 to 18 VDC for mobile applications, or from 90 to 240 VAC for installations using the regulated power supply furnished with the unit. A locking connector on the rear panel secures the power connection.

The RF signals at the inputs first pass through a ceramic filter to block energy above and below the passband. The signal is then fed to a high current amplifier to apply the gain needed ahead of the splitter. The amplifier is a high current type with a very high IP3 (third order intercept) that minimizes intermodulation products.

The amplifier output is then distributed to the output jacks using a Wilkinson “strip line” RF splitter. Unused outputs should be terminated with 50 Ohm dummy loads for maximum performance, however, the splitter design allows unused jacks to remain un-terminated with only a slight effect on other channels (+/- 1 to 2 dB in the level at the outputs).

The unit is housed in a standard 19 inch rack mount assembly with rugged connectors.

UMC16B RF Signal Distribution
Antenna Power Jumpers

NOTE: These jumpers are ONLY to be used when the Lectrosonics UFM50 or UFM230 filter/amp modules are being powered from DC on the antenna input jacks on the UMC16B multicoupler.

For long cable runs between the UMC16B and remote antennas, gain must be applied at the antenna end of the coaxial cable to compensate for the loss that occurs over the length of the cable run. The Lectrosonics UFM230 or UFM50 filter/amp module can be placed in an optimum position close to the antenna and powered by DC from the UMC16B via the coaxial cable. This applies the gain before the loss in the coaxial cable run to maximize the signal to noise ratio. Jumpers at the antenna inputs on the UMC16B enable the DC power on the BNC jacks.

1. To enable the DC antenna power, unplug the power cord and remove the cover (12 screws).

2. Locate the jumpers on the circuit board. When the jumper is inserted toward the outside of the unit, power is disabled. Inserted toward the inside of the unit, power is enabled.

If tape is present over the socket, be sure to replace it after re-positioning the jumper.

NOTE: If a splitter/combiner is used between the UFM230 and the UMC16B, it will not pass the DC power to the antennas.
Antenna Use and Placement

Try to position the antennas so that they are not within 3 or 4 feet of large metal surfaces. It is also good to maintain a direct “line of sight” between the transmitter and the receiver antennas. In situations where the operating range is less than about 50 feet, the antenna positioning is much less critical.

A wireless transmitter sends a radio signal out in all directions. This signal will often bounce off nearby walls, ceilings, metal surfaces, etc. and a strong reflection can arrive at the receiver antenna along with the direct signal. When the direct and reflected signals are out of phase with each other a cancellation will occur as the signals mix at the antenna input, resulting in what is known as a “drop-out.”

At UHF frequencies, a drop-out usually sounds like a brief noise burst, click, pop, or something similar. In severe cases, may result in a complete loss of the carrier and the sound. A drop-out situation may be either better or worse as a crowd fills and/or leaves the room, or when the transmitter and receiver antennas are moved to different locations.

Diversity receiver designs apply various circuitry to select or combine two antennas to reduce or eliminate multipath drop-outs. The antennas must be placed at least a half wavelength apart to achieve a noticeable reduction in drop-outs, or better yet, several feet apart for the maximum benefit.

It is generally best to use two of the same type antennas on a diversity receiver, as some designs combine both antenna signals into a single receiver with a phase correction between them to maximize the resultant RF signal. If one antenna signal is significantly stronger than the other, the signal from the weaker antenna will do little to prevent multipath drop-outs that occur at the stronger antenna.

The diagram below depicts a classic multipath drop-out situation. In some diversity designs, a second antenna in a different location is selected instead of the first antenna, following the logic that a multipath drop-out is not likely to occur simultaneously at both antennas. Other designs combine the two antenna signals and control the phase of one them to make sure they always add to each to provide a stronger signal.

Accessory Antennas

The UMC16B will operate with any 50 ohm antenna with a BNC connector, provided the antenna is tuned to the same frequency band. Two unique models are offered by Lectrosonics to help optimize reception in any location or installation.

The SNA600 is a versatile, collapsible dipole antenna that provides a circular coverage pattern and a 100 MHz passband. The elements are tuned to frequency using a scale along the feed line. A mounting stud and bracket are included with the unit.

The ALP Series LPDA antennas are directional antennas with 4.5 dB of gain covering a broad bandwidth from 450 to 850 MHz. They are constructed of FR4 fiberglass in a rugged assembly and are available in several models: ALP500, ALP620, and ALP650. Mounting options for all ALP Series antennas include threaded rods and adaptors to fit lighting equipment, tripods, mic stands and attachment to building surfaces.
Specifications

Type: Active RF distribution system with ceramic filtering
Inputs: Two 50 Ohm BNC jack on rear panel
Third order intercept: +27dBm at input
Outputs:
 Type: 16 BNC jacks on rear panel. Eight jacks per antenna.
 Isolation: 20 dB min, any output to any output
 Any output can be open, shorted, or terminated without
 affecting other outputs.
 Splitter type: Wilkinson 1/4 wave strip-line
Filter passband:
 UMC16B: 537 to 768 MHz (blocks 21 to 29)
 UMC16BL: 470 to 692 MHz (blocks 470 to 26)
 (See serial number sticker on side panel for frequency
 range of your particular unit.)
Input/Output RF gain: 0 dB nominal
In-Band Ripple: +/-2 dB
Power Requirements: 12 to 16 VDC; overload protection provided by internal auto
 resetting poly fuse
Power consumption: Nominally 300 mA at 15V DC
Dimensions: 19 x 7 x 1.75 inches
Weight: 2 lbs., 9ozs.

Specifications subject to change without notice.

Service and Repair

If your system malfunctions, you should attempt to
correct or isolate the trouble before concluding that the
equipment needs repair. Make sure you have followed
the setup procedure and operating instructions. Check
the inter-connecting cords.

We strongly recommend that you do not try to repair
the equipment yourself and do not have the local repair
shop attempt anything other than the simplest repair. If
the repair is more complicated than a broken wire or
loose connection, send the unit to the factory for repair
and service. Don’t attempt to adjust any controls inside
the units. Once set at the factory, the various controls
and trimmers do not drift with age or vibration and never
require readjustment. There are no adjustments inside
that will make a malfunctioning unit start working.

LECTROSONICS service department is equipped and
staffed to quickly repair your equipment. In-warranty
repairs are made at no charge in accordance with
the terms of the warranty. Out of warranty repairs are
charged at a modest flat rate plus parts and shipping.
Since it takes almost as much time and effort to deter-
mine what is wrong as it does to make the repair, there
is a charge for an exact quotation. We will be happy to
quote approximate charges by phone for out of warranty
repairs.

Returning Units for Repair

You will save yourself time and trouble if you will follow
the steps below:

A. DO NOT return equipment to the factory for repair
without first contacting us by letter or by phone.
We need to know the nature of the problem, the
model number and the serial number of the equip-
ment. We also need a phone number where you can
be reached 8 am to 4 pm (Mountain Standard
Time).

B. After receiving your request, we will issue you a
return authorization number (R.A.). This number
will help speed your repair through our receiving
and repair departments. The return authorization
number must be clearly shown on the outside of
the shipping container.

C. Pack the equipment carefully and ship to us, shipping
costs prepaid. If necessary, we can provide
you with the proper packing materials. UPS is
usually the best way to ship the units. Heavy units
should be “double-boxed” for safe transport.

D. We also strongly recommend that you insure the
equipment, since we cannot be responsible for
loss of or damage to equipment that you ship. Of
course, we insure the equipment when we ship it
back to you.

Lectrosonics USA:
Mailing address: Lectrosonics, Inc.
PO Box 15900
Rio Rancho, NM 87174
USA

Shipping address:
Lectrosonics, Inc.
581 Laser Rd.
Rio Rancho, NM 87124
USA

Telephone:
(505) 892-4501
(800) 821-1121 Toll-free
(505) 892-6243 Fax

Web: www.lectrosonics.com
E-mail: sales@lectrosonics.com

Lectrosonics Canada:
Mailing Address:
720 Spadina Avenue, Suite 600
Toronto, Ontario M5S 2T9
Canada

Telephone:
(416) 596-2202
(877) 753-2876 Toll-free
(877-LECTRO)
(416) 596-6648 Fax

E-mail:
Sales: colinb@lectrosonics.com
Service: joeb@lectrosonics.com
LIMITED ONE YEAR WARRANTY

The equipment is warranted for one year from date of purchase against defects in materials or workmanship provided it was purchased from an authorized dealer. This warranty does not cover equipment which has been abused or damaged by careless handling or shipping. This warranty does not apply to used or demonstrator equipment.

Should any defect develop, Lectrosonics, Inc. will, at our option, repair or replace any defective parts without charge for either parts or labor. If Lectrosonics, Inc. cannot correct the defect in your equipment, it will be replaced at no charge with a similar new item. Lectrosonics, Inc. will pay for the cost of returning your equipment to you.

This warranty applies only to items returned to Lectrosonics, Inc. or an authorized dealer, shipping costs prepaid, within one year from the date of purchase.

This Limited Warranty is governed by the laws of the State of New Mexico. It states the entire liability of Lectrosonics Inc. and the entire remedy of the purchaser for any breach of warranty as outlined above. NEITHER LECTROSONICS, INC. NOR ANYONE INVOLVED IN THE PRODUCTION OR DELIVERY OF THE EQUIPMENT SHALL BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS EQUIPMENT EVEN IF LECTROSONICS, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL THE LIABILITY OF LECTROSONICS, INC. EXCEED THE PURCHASE PRICE OF ANY DEFECTIVE EQUIPMENT.

This warranty gives you specific legal rights. You may have additional legal rights which vary from state to state.